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Appendix 

In this work, we have used CNDO/2 and INDO 
SCF-MO calculations in order to illustrate qualita­
tively several theoretical points. The computations 
were carried out on a CDC-6400 computer utilizing a 
computer program which is essentially identical with 
the one of Pople and Dobosh described in ref 29. In all 

This paper is the first in a series involving the devel­
opment of a semiempirical method for the calcula­

tion of molecular systems of sufficient accuracy to be of 
chemical usefulness. To this end we feel the theory 
should be able to give reliable estimates of molecular 
geometries, heats of atomization, and force constants, 
as well as describing adequately bond formation and 
dissociation. If these objectives can be achieved, we 
then feel that we would have a quantum mechanical 
model useful for the study of a variety of reaction 
mechanisms. This should lead us to the prediction of 
transition species and selection of reaction paths. 

Given these general expectations, the theory should be 
designed to make its interpretation on the basis of 
traditional chemical intuition as easy as possible. 
Since a semiempirical theory is built up from the stand­
point that we know something about chemistry, it seems 
reasonable to expect that its output should lead to inter­
pretation of chemical problems in those terms. For 
example, we believe that the bonding in molecules 
essentially involves the valence electrons, so we can 
then use a theory which treats the valence electrons ex­
plicitly and freezes the inner electrons as cores around 
the atomic nuclei. Furthermore, since we like to 
picture electrons as forming bond pairs between atoms, 
a theory which localizes electrons in this manner makes 
it convenient for the description of what is happening to 
reacting molecules in terms of these bonding electrons. 

Pople's original development of the CNDO1 semi-
empirical method was designed to be an approximation 
to a full LCAO-SCF minimal basis set calculation. 

(1) J. A. Pople and G. A. Segal, / . Chem. Phys., 44, 3289 (1966); 
43, S129 (1965). 

cases, standard bond lengths and bond angles were 
used. In one case, the IT MO's of the FHC- fragment 
were determined by a simple Hiickel MO calculation 
with the following input parameters: # F F = a + 
2.1/3, Hcc = a, H0F = 1.25)3, a = O, /3 = -2.88 eV. 

(29) J. A. Pople and D. L. Beveridge, "Approximate Molecular 
Orbital Theory," McGraw-Hill, New York, N. Y., 1970. 

That is, he designed the theory to reproduce a specific 
type of quantum mechanical calculation and not ex­
perimental data. However, the literature contains a 
number of proposals for modifying the theory to 
achieve agreement with various types of experimental 
information.2 Dewar was one of the first to recognize 
the need for developing a method for general chemical 
usefulness. His MINDO3 procedure has been for the 
most part successful. However, the parameterization 
seems unnecessarily complicated in that the resonance 
integrals and core-core repulsions are treated with 
bond-dependent parameters. Another rather suc­
cessful method has been developed by Fischer and 
Kollmar.4 Their theory remains uncomplicated re­
quiring essentially a reparameterization of Pople's 
CNDO/2 method, but it has not been extended beyond 
hydrocarbons. A number of other modifications have 
been suggested but they do not appear to be applicable 
in meeting our general objectives. In particular, since 
all these theories are based on the HF model, they are 
afflicted with the well-known HF dissociation error; 
i.e., if a bond is broken, the molecular fragments do not 
dissociate into their respective electronic ground states 
in the restricted HF model. 

In this first paper we have attempted to keep the basic 

(2) (a) K. B. Wiberg, / . Amer. Chem. Soc, 90, 59 (1968); (b) J. M. 
Sichel and M. A. Whitehead, Theor. Chim. Acta. 11, 220, 254, 263 
(1968); (c) J. Del Bene and H. H. Jaffe, J. Chem. Phys., 48, 4050 (1968); 
49,1221 (1968). 

(3) (a) N. Bodor, M. J. S. Dewar, and D. H. Lo, J. Amer. Chem. 
Soc, 94, 5303 (1972); (b) M. J. S. Dewar and D. H. Lo, ibid., 94, 5296 
(1972); (c) N. Bodor, M. J. S. Dewar, E. Haselbach, and A. Harget, 
ibid., 92, 3254 (1970); (d) M. J. S. Dewar and E. Haselbach, ibid., 92, 
590 (1970). 

(4) H. Fischer and H. Kollmar, Theor. Chim. Acta, 13, 213 (1969). 
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theory as simple as possible to find out to what extent 
and in what areas improvements would be necessary. 
At this stage we are limiting ourselves to the atoms H, 
C, N, and O and the description of closed shell ground 
states. We have used Pople's CNDO/2 method with 
some changes in the approximation of penetration and 
resonance integrals. But instead of solving the single 
determinant Fock equations, we solve the MC-SCF5 

equations for single and double pair replacement 
determinants. The parameterization we introduce has 
been optimized to obtain equilibrium geometries and 
heats of atomization for a selected set of molecules. 

Perhaps we should say a few words about what 
solving the MC-SCF equations means for a theory at 
this level. In order to properly treat bond dissociation 
processes, it becomes necessary to use wave functions 
formed from a linear combination of Slater determi­
nant instead of a single determinant. One way to do 
this would be to simply do a CI calculation. However, 
the disadvantage of that procedure is that one can only 
optimize the coefficients in the linear combination of 
determinants and not the molecular orbitals within the 
determinants. The MC-SCF procedure avoids this by 
simultaneously optimizing both sets of coefficients. By 
using only determinants corresponding to a transfer 
of pairs of electrons to bonding and antibonding orbit­
als, the MC-SCF equations become relatively simple 
and the electrons become localized into bond pairs. 
More important, however, with such a configuration 
selection the HF dissociation error is removed, and we 
can hope to adequately describe bond formation and 
bond breaking processes with our model. 

In the next section we will outline the theoretical ap­
proach we have used. Next the optimization of the 
parameters is discussed and some initial results are pre­
sented. In the final section the theory is discussed from 
the point of view of the overall usefulness and its 
present limitations. 

I. Theoretical Framework 
We will now describe in some detail the formalism 

which has been developed to take into account single 
and double pair excitations from a closed shell ref­
erence determinant. Consider a set of M spatial, 
orthonormal orbitals 

{01, 02, • • •, 4>M} 

with M equal to the number of basis functions and N 
equal to the number of doubly occupied orbitals in the 
reference determinant, M > N. Let the ground state 
Slater determinant (SD) be represented by 

$00 = {012, 022, . . . , 0 * 2 } 

We can then construct the following normalized SD's 

$ / 0 = {012, . . ., 0 , V , 0O
2, 0<+1

2, . . ., 0,v2} 

* „ = {012, . . . , 0 , - I 2 , 0O
2, 0,+l2, . . . , 

0;_12, 0s2, 0j+l2, . . ., 0AT2} 

where in <t>70 orbital 0a replaces <j>t and in $?u orbital 0a 

replaces 04 and 05 replaces (f>}. These replacements are 
restricted so that each 0,- can only be replaced by one 

(5) (a) J. Hinze, J. Chem. Phys., 59, 6424 (1973); (b) T. L. Gilbert, 
Phys. Rev., A6, 580 (1972); (c) J. Hinze and C. C. J. Roothaan, Progr. 
Theor. Phys., 40, 37 (1967); (d) A. Veillard and E. Clementi, Theor. 
CMm. Acta, 7,133, 143 (1967). 

and only one orbital 0a, where 0a is unoccupied in the 
reference determinant $oo- This restriction was made 
for the following reasons: (a) to keep the model rela­
tively simple, (b) to give the theory a definite structure, 
(c) to permit proper treatment of bond dissociation, and 
finally (d) to yield orbitals which would be localized. 
If desired a final, more general CI could lift this re­
striction, but little can be expected from excitations 
0i2 -»• 4>j* 2 (0j = <f>j*, the antibonding orbital to 0,) 
since 0S and 0 / are in different regions of space, while 
0, and 0,* (or <f>j and 0 / ) occupy the same region of 
space. The total wave function can now be written as 

* = CoSoo + ECJjQ1J 
I>J 

Note that in this equation and all following ones the 
lower indices of the summations (/ in this case) start at 
zero, unless otherwise specified. 

For convenience we will divide the M spatial orbitals 
into three sets depending on their occupation in the 
total wave function. Orbitals which are doubly oc­
cupied in all SD's will be called core. Those which are 
doubly occupied in only some of the SD's will be called 
valence. Additional orbitals not used in the total wave 
function are called empty. These sets are designated 
by e, V, and S, respectively. 

Because we start with orthonormal orbitals, all the 
SD's will be orthonormal and the expectation value of 
the energy will be 

E = <^J3C|¥) = Coo2(*oo|5C[*oo) + 

2CooEC7/<*oo|3e|*w> + 
I>J 

I>J 
K>L 

provided ^ is normalized. Because of the restrictions 
made in constructing the SD's this expression simplifies 
to 

E — Coo2Eoo + 2COO/_,CIOGJ + Z^C1J
2E1J + 

i*o I>J 

2Z[Cu(C10Gj + Cj0G1)] 
I>J 

where 

E1J = <$„|3C|$„) 

G1 = [ia\ia] = <0i(l)0a(2)jJRi2-
1J0a(l)04(2)) 

In order to come up with a compact notation we will 
write a general expression for E17 as 

M 

E1J = 2J2ak'
J(k\h\k) + 

k 

M 

2 2 V V ( W ] - 0.5[kl\kl]) 
k,l 

where 

(1 k < N 
e>"-\0 k>N 

i
l k < N,k ?* i 

0 k < N,k = i 

0 k> N,k ^ a 

1 k> N,k = a 
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ak' 

[ 0 k < N,k = i,j 

Il k < N,k j* i,j 

Il k > N, k = a, b 

I 0 k> N,k 9± a,b 

This allows us to define the following effective coeffi­
cients 

ak = 2T1C1OW0 + 2J2CJJWJ 

i I>J 

bkl = 2EC7O
8AZ0A/0 + 2T1CuWW' 

i I>J 

Cki — ll^bki — 26tt5(0(CooC70 + T C JoC1 j) — 
j 

J*I 

2Oj12OJi(CoOWo + / ,C.fpCr.rYl 
J 

where in the equation for cki I refers to the configura­
tion of i replaced by a and 5 is the Kronecker delta. 
This leads to the simple expression for the total energy 

M M 

E = T<k\h\k) + Tbdkk\ll] - ckl[kl\kl] 
k k,l 

We can now write the Fock-like equations 

M 

Ft\4>i) - T\4>i)*}i 

where 

M 

with 

F,: = a,h + 2T(buJj — c«/Q 
j 

K^) = {4>,\g\4>)\4>,) 

The treatment of the pair-replacement formalism has 
thus far not required any approximations. But at this 
point we convert to the matrix form of the LCAO ex­
pansion and apply the CNDO approximation for the 
coulomb and exchange integrals. 

That is, for molecular orbitals of the form 

<t>t = Txv&tv 
p 

the Fock matrix elements become 

F = 

C*i«* pp 

1 % ,PQ 

since 

M \ Mf /M 
2-i^CijO.jp Jypp T - 2-i 
3 / r L \ i 

-- atHv<l - [TlCijdjpdjAy 

J3 ,pq ®p<l2—nprQj 

TfoiAi* hpr 

K1, 7wd„d. jp'-'js 

in the CNDO approximation, where yPq is determined 
solely from the atoms on which \v and x5 reside. No­
tice the similarity of these equations to those used in the 
conventional CNDO method. 

A' \ Mf/ N 
F„„ = Hpv — [ T^lP* jjpp + T VV T1^r2 hpr 

FPI - R'VQ — ( T&jv&jqpPd 

Let us next address ourselves to the solution of the 
MC-SCF equations. Notice that we no longer have a 
simple eigenvalue problem with a single Fock operator 
but rather a set of coupled Fock equations. This cou­
pling could be removed, at least formally, using pro­
jection operator techniques to yield a pseudo-eigen­
value equation.511 However, in practice a solution 
based on the requirement of Hermiticity of the La­
grange multiplier matrix has been more successful. 
That is, we require ejt to equal etj, with ti} = (^jF/j^-). 

Assume that we have a set of initial orbitals which do 
not in general satisfy our Fock equations. What we 
are looking for then is the unitary transformation which 
transforms these orbitals into a new set which does 
satisfy the equations. In matrix notation this becomes 

\4>i', . . . ,0Ar '! = {4>u •••, ^M]1U 

and we determine U such that 

(4>AFA^i') ~ (*i'\Fi%') = 0 
is satisfied for all / and j . Note that the indices / and j 
run over all orbitals including the empty set; however, 
F1 = 0 for / G S. While there are a number of possible 
ways to solve this equation,Ba the method we use is to 
approximate the unitary matrix as 

U = 1 + V 

which is good to second order in terms of V, provided V 
is antisymmetric. This approximation requires that 
the initial orbitals are reasonably close to the solution 
orbitals. Using this approximation and neglecting the 
change in the Fock operators we get 

eit - e„ £* {<t>AFi\<t>i'> ~ {<t>i'\F,\<t>,') 
M 

= T^mj{4>m\Fi\<i>^)Uni — Uml(4>m\FJ[^)n)IJ nj 
m,n 

S to|F4|^> - <^|F,|0,> + 

Y,[Vml({<l>m\Ft\<t>t) - (<t>i\Fj\(t>m)) + 
m 

Vmi((<t>i\Fi\<t>m) ~ (GmlFjlfa))] = 0 

These equations can now be collected into a set of linear 
equations 

TR, = gtj i >j; m > n; j , n $_ S 

This is possible because v{} = —vn and because we have 
neglected the second-order terms of V. Note that ij 
and mn are composite indices, so that v and g are column 
vectors and R is a square matrix. The reason y and n do 
not run over orbitals in the empty set is that rotations 
between orbitals in the empty set are not needed be­
cause they do not affect the wave function. The ele­
ments of g and R are obtained as 

gi} = (<t>t\Fj\4>]) - <<£jJF(Ĵ 1) 

Rt],mn = bmt((4>n\Fj\4>]) ~ (4>l\Fi\<t>n}) + 

bn^{<K\Fi\4>i) - (<S>i\F,\<t>m)) -

dUitmlF^} ~ (tjlF^)) -

M(*»l^|0«) - (<t>i\Fj\<Pn)) 
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This set of linear equations is particularly well suited 
for solution by a dynamic Gauss-Seidel iterative 
method,6 since the off-diagonal elements of R are small 
compared to the diagonal ones. The recurrence rela­
tion is 

Rii,iAVil = gii - T,Rv.mnVmnW ~ T1RiJWW~l) 

mn = 1 mn = ij 

Ui/ n ) = D « ( " - " + APW 

The procedure is started by assuming the initial vt}
(0)'s 

are all zero and continued until the Apw's are less than 
some threshold. 

At this point the steps necessary to do a typical cal­
culation will be outlined. (1) A set of initial orbitals is 
chosen. These can be rather approximate but should 
be chosen on the basis of the bonds and lone pairs of 
the molecules. (2) For each bonding orbital an anti-
bonding one is formed and these orbitals are used to 
form the corresponding SD's. (3) Then a CI calcula­
tion is performed to determine the coefficients C1J and 
the effective coefficients a*, bhh and cu- (4) Next the 
Fock matrices F1 are calculated and the linear equations 
are solved to determine the u4/s. The old set of molec­
ular orbitals is then transformed to the new set. Since 
we have neglected the change in the Fock matrices and 
the second-order terms of V, it is necessary to repeat 
step 4 until the gtJ'$ are less than a given threshold. 
(5) Finally, after step 4 converges we go back to step 3 
and go through the procedure again until the difference 
in total energy of successive iterations is less than 
another threshold. We call step 4 the SCF cycle and 
step 5 to 3 the CI cycle. In the systems studied so far, 
convergence has been achieved usually in less than five 
CI iterations and a total of 25 SCF iterations, with an 
SCF threshold of 0.0001 and a CI threshold of 0.000001 
hartree. 

To complete the theoretical description let us specify 
how the coulomb integrals, ytq, and the core Hamil-
tonian matrix elements, HPq, are to be determined. 
The coulomb integrals are found exactly as in Pople's 
CNDO, that is 

7?« = T A B = [ J A S A | J B * B ] 

where SA and sB are the valence s functions on those 
atoms. These functions are of the Slater type with the 
standard Slater exponents. 

The Hamiltonian matrix elements were given by 
Pople as 

Hvv = - 1 M / , + A9) - (ZA - 0.5)7AA - £KAB 
A>B 

(Xp o n A ) 

VAB = ZByAB 

Hvi = 0 (x*, X? on A, p ^ q) 

HPq = /3„ = 72(/3A° + /V)S^ (Xp on A, Xl on B) 

The values for the ionization potential Iv and the elec­
tron affinities AP have been calculated from atomic data 
and we have used the values given by Pople.1 How­
ever, we differ from CNDO/2 in the calculation of FAB 
and (3j,j. 

Fischer and Kollmar4 noted that Pople's CNDO/2 

(6) See, for example, R. S. Varga, "Matrix Iterative Analysis," 
Prentice-Hall, Edgewater Cliffs, N. J., 1962, p 58. 

formalism as outlined above tended to yield high force 
constants. They found that the values of /3A0 had little 
effect on the force constants and so found it necessary 
to alter VAB- We have used their formula to calculate 
F A B 

VAB" = ZBI(I - a)yAB + a(RAB* + (l/f,2))-'/2] 

where a is a parameter and f„ is the orbital exponent for 
Xp on atom A. The value for a is determined as a 
single quantity to be used for all A, B, and x/s. This 
equation has given us improved force constants as well 
as giving more freedom in achieving optimal bond 
lengths. 

The heats of atomization, bond lengths, and bond 
angles are affected by the value of the resonance integral 
(Sp8. We tried to simply reparameterize Pople /3A°'s but 
found that both single and multiple bond lengths could 
not be handled adequately to give also correct heats of 
atomization. Therefore, it was found necessary to 
introduce separate /3's for s and p basis functions, using 
the same distance dependence as Pople. 

&,5 = 0.503, + 0t)S„ 

The theory is no longer invariant to hybridization, but 
this seems to make little difference in the total ener­
gies.7 A number of people have used Mulliken's ap­
proximation 

fipq = /3AB(/J> + Iq)Sp11 

which is similar to our form. However, we found that 
this approximation yielded poor bond angles in our 
model if average valence state ionization potentials 
were used. 

II. Optimization of Parameters 
In order to do calculations on molecules containing 

H, C, N, and O, we must specify eight parameters (a, 
/JH, ft", /JCP, /3N8, /JNP, /JO8, and /30

p). To do this we se­
lected seven molecules, H2, CH4, C2H2, H2O, CH2O, 
NH3, and N2, on the basis that they were representative 
of single and multiple bonding for these atoms and 
were easy to calculate. All the calculations were done 
using determinants formed with both single and double 
pair excitations. However, at the equilibrium geom­
etries the expansion coefficients of determinants cor­
responding to double pair excitations are all small, 
usually less than 0.02. These double excitations will 
become important only as a bond is dissociated. 

The parameters were then determined using a least-
squares fit to the experimental values of 18 observables, 
including the bond lengths and heats of atomization of 
all these molecules, the HOH angle in H2O, and the 
HNH angle in NH3. The minimum in this least-
squares fit was found to be rather shallow, leading to 
slow convergence. The final set of /3's obtained, av­
eraged from two least-squares iterations, is listed in 
Table I. The value for a was found to be 0.3143. 

Table I. Parameters for H, C, N, O (au) 

- / S -
-0» 

H 

0.2923 

C 

0.5404 
0.3795 

N 

0.7673 
0.5034 

O 

0.9885 
0.8282 

(7) D. T. Clark, Theor. CMm. Acta, 10, 111 (1968). 
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of the same sign is particularly unfortunate in that there 
is little chance of cancellation of errors in a reacting 
system. 

The agreement of our calculated bond lengths and 
angles with the experimental values is very satisfactory. 
These are listed in Tables III and IV. Also listed in 
Table III are the force constants for bond stretching. 
Except for H2O2 and the CO bond in CH3OH all bond 
lengths are reproduced within 0.035 A. In the case of 
CH3OH the calculated value is 0.069A less than the ob­
served length. Note that MINDO/230 also has diffi­
culty with this bond, being too short by 0.054 A. As 
Dewar has discussed, the problem in H2O2 is due to the 
neglect of two-electron integrals involving one-center 
overlap in these methods. This causes the exchange 
repulsions between lone pairs to be underestimated and 
the corresponding bonds become too short and molec­
ular energies too low. On the whole, however, the 
accuracy in the prediction of bond length is very 

Table IH 

H - H 
C - H 

0—H 

N - H 

C - O 

C = O 

C-C 

C = C 

Cs=C 
C - N 
C = N 
O—O 
N = N 

H2 

CH4 

C2H2 

C2H4 

C 2 H 6 
CH2O 
HCN 
H2O 
CH3OH 
H,0 2 

NH3 

CH3NH2 

CH3OH 
HCOOH 
CH2O 
HCOOH 
C2Hs 
C3Hs 
C2H4 
C3H6 

C2H2 

CH3NH2 

HCN 
H2O2 

N2 

Mean absolute error" 
Mean error" 
Standard deviation" 

" Excluding O-O in H2O2. 

Exptl 

0.741 
1.093 
1.059 
1.086 
1.093 
1.120 
1.063 
0.957 
0.960 
0.950 
1.014 
1.014 
1.428 
1.312 
1.210 
1.245 
1.534 
1.488 
1.337 
1.353 
1.205 
1.474 
1.155 
1.475 
1,095 

g 

Calcd 

0.716 
1.097 
1.073 
1.094 
1.103 
1.104 
1.076 
0.988 
0.990 
0.999 
1.039 
1.046 
1.359 
1.345 
1.223 
1.238 
1.535 
1.507 
1.341 
1.361 
1.189 
1.462 
1.166 
1.210 
1.122 

ond lengths, A— 

Rc — Rx 

- 0 . 0 2 5 
0.004 
0.014 
0.008 
0.010 

- 0 . 0 1 6 
0.013 
0.031 
0.030 
0.049 
0.025 
0.032 

- 0 . 0 6 9 
0.033 
0.013 

- 0 . 0 0 7 
0.001 
0.019 
0.004 
0.008 

- 0 . 0 1 6 
- 0 . 0 1 2 

0,011 
- 0 . 2 6 5 

0.027 
0.020 
0.008 
0.024 

. 
(R0 - Rx)IRx, 

% 
- 3 . 3 7 

0.37 
1.32 
0.74 
0.91 

- 1 . 4 3 
1.22 
3.24 
3.13 
5.16 
2.47 
3.16 

- 4 . 8 3 
2.52 
1.07 

- 0 , 0 6 
0.07 
1.28 
0.30 
0.59 

- 1 . 3 3 
0.81 
0.95 

17,97 
2.47 
1.78 
0.78 
2.18 

Exptl 

5.7 
5.4 
6.2 
5.1 
4.8 
5.3 
5.9 
7.8 
7.6 
8.4 
6.4 
6.3 
5.4 
6.1 

12.3 
11.6 
4.5 

9.6 

15.8 
5,0 

17.9 
4.0 

23.0 

P'AtV^p ("*i"\n 
.T t J i I rC L-UIl 

Calcd 

7.5 
7.7 
8.5 
7.7 
7.5 
6.5 
8.3 

14.2 
13.9 
15.0 
10.5 
10.3 
7.5 

13.3 
18.5 
15.8 
6.2 

12.7 
10.9 
10.1 
16.0 
6.9 

20.6 
19.5 
28.4 

stants, mdyn/A-
(/. - U)Ifx,. 

fc-h 

1.8 
2.3 
2.3 
2.6 
2.7 
1.2 
2.4 
6.4 
6.3 
6.6 
4.1 
4.0 
2.1 
7.2 
6.2 
4.2 
1.7 

1.3 

0.2 
1.9 
2.7 

15.5 
5.4 

3.44 
3.44 
2.06 

% 
31.6 
42.6 
37.1 
51.1 
56.3 
22.6 
40.7 
82.1 
82.9 
78.6 
64.1 
63.5 
38.9 

118.0 
50.4 
36.2 
37.8 

13.5 

1.3 
38.0 
15.1 

387.5 
23.5 

46.63 
46.63 
27.04 

III. Results 

In Table II we have compared the calculated and ex­
perimental heats of atomization of the seven molecules 
used in the parameterization and eight additional 
molecules. The additional eight molecules were cal­
culated with the fitted parameter set in order to test 
whether the determined parameters are generally ap­
plicable outside the set of molecules used in the op­
timization. Excluding H2O2 which we will discuss 
below, the average magnitude of the error is about 3 % 
of the total heat of atomization. However, errors of 
this magnitude are still rather large when considering 
chemical reactions where 0.01 hartree corresponds to 
about 6.3 kcal/mol. The fact that the errors are not all 

Table II. Heats of Atomization (au) 

H2 

CH4 

C2H2 

C2H4 

C2Hg 
C3H6 

H2O 
CH2O 
CHbOH 
N2 

NH 3 

CH3NH2 

HCN 
H2O2 

HCOOH 

Exptl 

0.174 
0.669 
0.647 
0.897 
1.134 
1.368 
0.370 
0.597 
0.815 
0.363 
0.475 
0.927 
0.498 
0.427 
0.797 

Mean absolute error" 
Mean error" 
Standard deviation".6 

Calcd 

0.191 
0.656 
0.655 
0.874 
1.089 
1.298 
0.373 
0.611 
0.824 
0.386 
0.463 
0.896 
0.496 
0.590 
0.790 

&c &x 

0.017 
- 0 . 0 1 3 

0.008 
- 0 . 0 2 3 
- 0 . 0 4 5 
- 0 . 0 6 9 

0.003 
0.014 
0.009 
0.023 

- 0 . 0 1 2 
- 0 . 0 3 1 
- 0 . 0 0 2 

0.163 
- 0 . 0 0 7 

0.020 
- 0 . 0 0 9 

0.026 

(E0 - Ex)/ 
Ex, % 

9.77 
- 1 . 9 4 

1.24 
- 2 . 5 6 
- 3 . 9 7 
- 5 . 0 4 

0.81 
2.35 
1.10 
6.34 

- 2 . 5 3 
- 3 . 3 4 
- 0 . 4 0 
38.17 

- 0 . 8 8 
3.02 
0.07 
4.06 

Excluding H2O2. » S = [(Sx;2 - (2xi)*/N)/(N - I)]1A. 

Table IV. Bond Angles (deg) 

/ H C H 

/ H O H 
/ H N H 

C2H4 

CH2O 
H2O 
NH3 

Mean absolute error 
Mean error 
Standard deviation 

Exptl 

115.5 
118.0 
104.5 
106.8 

Calcd 

112.4 
114.8 
107.3 
109.7 

0c — 8X 

- 3 . 1 
- 3 . 2 

2.8 
2.9 
3.00 

— 0.15 
3.46 

(8c - Bx)I 

ex, % 
- 2 . 6 8 
- 2 . 7 1 

2.68 
2.72 
2.70 
0.01 
3.11 

pleasing. Notice that we have not had to make any 
special provisions for the bonding of hydrogen to 
second-row atoms as is done in MINDO/2, where these 
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bonds must be offset between 0.1 and 0.15 A. Bond 
angles are also given well with errors usually less than 4°. 

However, force constants are on the order of 50 % too 
high. While this is somewhat regrettable, we have re­
duced the CNDO/2 values which are from two to three 
times the experimental values. There is some satis­
faction in that our values seem consistent in that trends 
within and between groups of bonding pairs are repro­
duced. For example, as we go from C2H2 to C2H4 to 
C2H6 the C-H force constants decrease and in going 
from C-H to N-N to O-H the force constants increase, 
as they should. 

At this point we would like to compare the results of 
this MC-SCF approach with those for a single deter­
minant using the same parameters. For the molecules 
calculated in this paper, the equilibrium geometries are 
predicted with about the same accuracy with either the 
single or multiconfiguration approach. The force con­
stants were improved between 6 and 10% with the 
MC-SCF method. And, of course, the calculated 
heats of atomization are too small for the single deter­
minant case, since the parameter optimization took 
into account the CI energy, which ranged from 0.027 
to 0.125 au. It seems likely that by using the formulas 
for /3J,J and KAB given in this paper and a different set of 
optimized parameters one could get results comparable 
to ours for equilibrium geometry calculations using 
only a single determinant. However, it should be 
emphasized that the principle advantage of this MC-
SCF approach is that it allows potential curves to be 
calculated up to the dissociation limit, which cannot be 
done using any single determinant Hartree-Fock method. 

IV. Conclusion 
As was stated in the introduction our objective is to 

The subject of spin derealization in organic free 
radicals has attracted considerable attention in 

recent years. An understanding of this subject is 
naturally of value in interpreting esr spectroscopic data, 
but a further incentive for elucidating these mechanisms 
has been provided by the recent recognition that the 
chemical behavior of both open and closed shell sys-

develop a semiempirical model accurate enough to be of 
use in chemical problems. Clearly at this early stage 
we still have a way to go. However, it is encouraging 
that we have been able to do as well as we have with only 
eight parameters and by neglecting all differential 
overlap in two-electron integrals. While MINDO/2 
presently gives more accurate results for heats of atom­
ization and force constants, it requires 20 parameters 
and calculation of integrals involving monatomic 
differential overlap. 

To improve our model it is particularly important to 
predict heats of atomization more reliably. Perhaps a 
different form of FAB is necessary. Another possibility 
is the inclusion of integrals used in the INDO approxi­
mation. However, these changes are of a minor nature 
and fit easily in the MC-SCF pair-replacement for­
malism. More restrictive at the present time is the 
fact that we can only treat closed shell systems. 
Another limitation is that the model does not conven­
iently handle delocalized electrons as occur in aromatic 
systems. The difficulty with bonds between two atoms 
with lone pairs is perhaps not too serious given the few 
molecules involved. 

It seems reasonable that these improvements can and 
will be made to this MC-SCF procedure. The flexi­
bility in adequately treating a variety of reactions pro­
cesses and the ease of interpreting "chemically" lo­
calized orbitals makes this approach particularly ap­
pealing and useful. 
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terns is intimately associated with the spin density 
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Abstract: Nickel-induced pmr contact shifts have been determined for the 7 and S protons of a variety of amines 
in which the molecular geometries are constrained to rigidly fixed conformations. For 7 protons, it is concluded 
that homohyperconjugation, which places a spin at the protons in question, is dominant for those protons obeying 
the W plan. This mechanism falls off approximately as cos6 8y

K and allows spin polarization to dominate for a 
wide range of conformations, resulting in (3 spin at the protons. Finally, for protons in the conformation 9gc = 
0° and 0T

H = 0°, another resonance contribution leads to small positive spins. For 5 hydrogens, the largest positive 
spin densities result for those protons in the W-plan geometry and are attributed to an extended u-bond resonance 
phenomenon. Smaller spin densities are induced at 8 protons not conforming to the W plan. 

Underwood, Friedman / Ni-lnduced Pmr Contact Shifts for y and 8 Protons 


